Making Differential Privacy Easier to Use for Data Controllers and Data Analysts using a Privacy Risk Indicator and an Escrow-Based Platform


Differential privacy (DP) enables private data analysis but is hard to use in practice. For data controllers who decide what output to release, choosing the amount of noise to add to the output is a non-trivial task because of the difficulty of interpreting the privacy parameter ϵ. For data analysts who submit queries, it is hard to understand the impact of the noise introduced by DP on their tasks.

To address these two challenges: 1) we define a privacy risk indicator that indicates the impact of choosing ϵ on individuals’ privacy and use that to design an algorithm that chooses ϵ automatically; 2) we introduce a utility signaling protocol that helps analysts interpret the impact of DP on their downstream tasks. We implement the algorithm and the protocol inside a new platform built on top of a data escrow, which allows the controller to control the data flow and achieve trustworthiness while maintaining high performance. We demonstrate our contributions through an IRB-approved user study, extensive experimental evaluations, and comparison with other DP platforms. All in all, our work contributes to making DP easier to use by lowering adoption barriers.